Projecting Incoming Cohort Size, Characteristics, and Course Enrollments via Machine Learning

Texas Assoc of Institutional Researchers February 26, 2025

Dr. Scott Cook Chief Data Scientist - University Strategy Associate Professor - Mathematics scook@tarleton.edu

Dr. Morgan Carter Assoc Vice President of Institutional Data & Analytics TAIR President mcarter@tarleton.edu

Admitted Matriculation Projection (AMP)

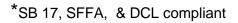
- Goal: Project Fall 2024 course-level enrollment of incoming admitted students
- For each incoming admitted student, AMP predicts probability to:
 - Matriculate (take any course)
 - Enroll in each individual course (~75 specified by provost)
- Aggregate projections for course, college, gender, campus*, hs pctl, state, county, etc
- Data Sources
 - Enrollment Management's weekly "Flags report" of admitted students
 - Current
 - Same date 2021, 2022, 2023
 - Course enrollments
 - Current
 - Same date 2021, 2022, 2023
 - Census date 2021, 2022, 2023

Before 2023





5 TARLETON STATE UNIVERSITY



Inputs

- Age
- Application date
- TX residency
- ACT/SAT score
- High school quartile
- Gender
- Race/Ethnicity*
- Major college
- Gap score

- Driving distance home to campus
- Legacy
- Attended orientation
- TSI scores (math/reading/writing)
- Campus
- Scholarship
- Submitted FAFSA
- Fee waiver
- Logged in student info system (ssb)

- Individual student level
 - Probability to enroll in course X
 - Shapley scores (influence from each input on each prediction)
- Aggregate projections for university, college, major, course
 - Enrollment of FTIC, transfer, and returning students
 - Historical errors analysis
 - Prediction intervals (in progress)

- 1 row per admitted student
- 1 column per student data element (previous slide)
- 2 columns per course
 - enroll_current: Was student enrolled in this course on this day? (T/F)
 - enroll_census: Was student enrolled in this course at census? (T/F)
- Common preprocessing (standard rescaling, one-hot-encoding, etc)
- Discuss missing values later

Supervised Machine Learning

- 3 student types: FTIC, transfer, returning (not continuing)
- Train separate models for each (course, student type) using:
 - Rows for that student type
 - Features: student data + enroll_current for this course
 - Target: enroll_census for this course

Supervised Machine Learning

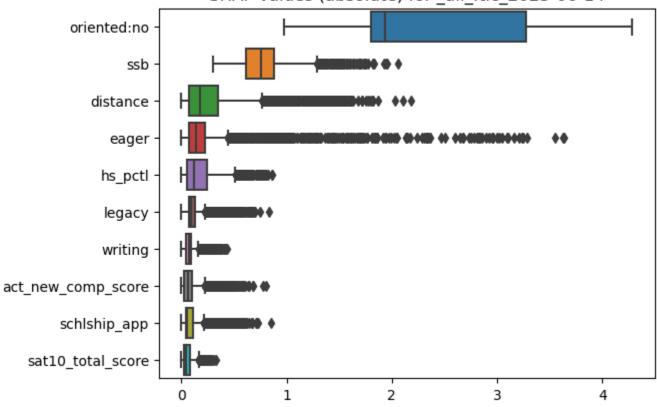
- Binary classification task with mixed data types
- Decision tree-based classifiers work best (<u>Random Forest</u>, <u>LightGBM</u>, <u>XGBoost</u>, <u>Histogram Gradient Boosting Trees</u>)
- FLAML: Fast Library for Automated Machine Learning
 - Microsoft Research open-source Python automated machine learning (2021)
 - Optimized hyperparameter tuning without human intervention
 - Adjustable "time budget" to prevent run-away jobs
- "predict_proba" estimates probability that each student will be enrolled in specified course at census
- May need probability calibration for accurate aggregations (course, college, etc)

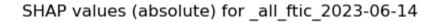
Missing Data

- Data mostly complete except ACT/SAT (~¹/₃ missing)
- Highly predictive (see Shapley) \rightarrow do not want to drop \rightarrow impute missing values
- Not missing at random motivated, well-prepared students submit ACT/SAT at higher rates AND have higher scores AND are more likely to matriculate
 - Missingness correlated with target
 - Imputing missing ACT/SAT with mean ACT/SAT would overestimate

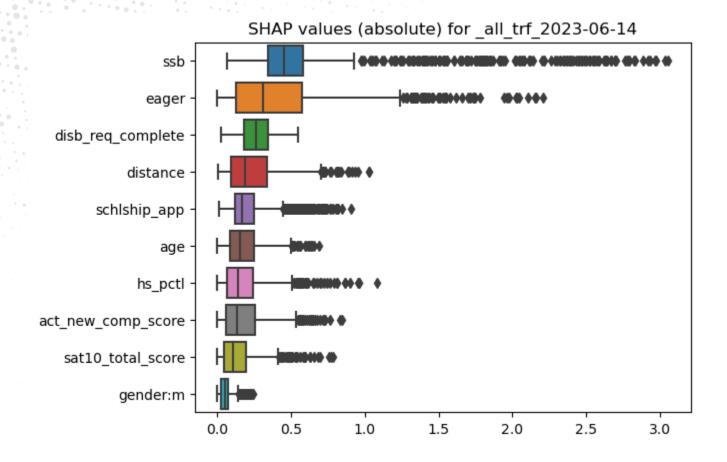
MiceForest

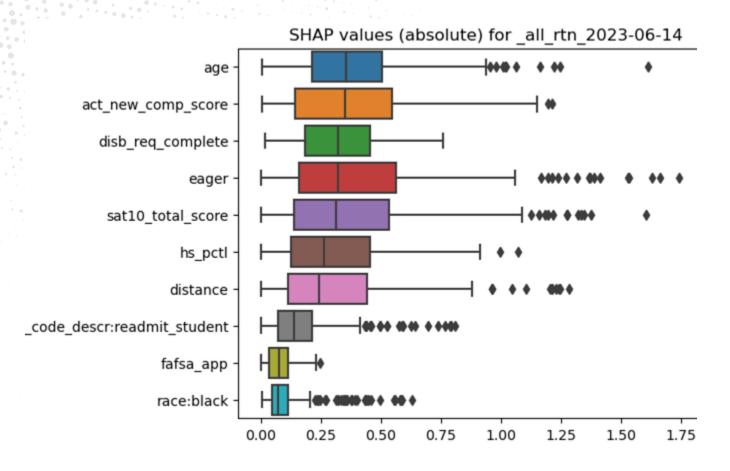
- Advanced imputation of missing values using iterative LightGBM
- \circ Multiple imputation \rightarrow prediction intervals (turned out too narrow tweaking)


- AMP models students that have already applied (eager)
- What about students that will apply between now and Fall? (lagging)
- Key assumption: Rate & characteristics of this year's lagging applicants will be similar to same period in prior years
 - Compute lagging/eager ratio for prior years (remarkably stable for FTIC, transfer, returning separately)
 - Project 2024 based on eager applicants
 - \circ Inflate using prior lagging-eager ratios $\rightarrow\,$ models 2024 lagging applicants
 - Vulnerable to year-over-year changes (ex: earlier admission, different orientation cadence, FAFSA disruption, policy changes, etc)



PRELIMINARY


				0%	25%	50%	75%	100%
	crse	when	kind					
	_total	current	pred	3056.47	3184.03	3252.94	3321.0	3575.95
°.		past	pred_err%	-11.38	-5.84	-1.38	2.94	12.5
			f1_inv%	30.26	38.56	43.36	45.34	48.08
ag	agec2317	current	pred	218.91	263.42	284.06	354.02	493.03
		past	pred_err%	-34.44	-17.34	-7.25	24.27	73.91
а	agri1100	current	pred	738.73	804.37	823.98	852.32	1037.47
		past	pred_err%	-26.39	-11.46	-7.19	3.79	35.41
а	agri1419	current	pred	0.0	1.19	1.28	115.5	538.27
		past	pred_err%	-19.41	-12.34	5.05	15.86	45.95
a	ansc1319	current	pred	63.14	388.57	403.14	431.38	1361.21
		past	pred_err%	-87.01	-55.52	-46.1	37.99	100.0
Ŀ	biol1406	current	pred	801.78	850.71	887.31	921.58	1021.34
		past	pred_err%	-18.18	-7.13	-3.13	8.3	23.85
Ŀ	biol2401	current	pred	464.31	530.46	550.81	569.6	624.56
		past	pred_err%	-40.16	-18.43	4.29	11.37	14.5
ь	busi1301	current	pred	321.21	355.47	380.42	421.21	519.2
		past	pred_err%	-50.29	-35.14	-2.32	49.12	89.33



Dr. Javier Garza, Vice President for Enrollment Management:

- In Fall 2024, FTIC headcount was up 11% but FTIC semester credit hours were up 14%. Historically, these are equal.
- He believes AMP is the only salient difference & credits it with the extra 3% SCH (approx \$350,000)
- He believes AMP gave dept heads better estimates for course demand early enough to create sections & hire instructors.
- This gave advisors more options to put students into additional courses, generating SCH growth independently of headcount growth.

Additions & Improvements

- Incorporate high school course grades via new transcript OCR
- Project housing demand
- Prediction intervals
- Dashboard
- Train on single year or multiple?
- Adjust training process to handle course-specific year-over-year-changes
- Course-specific vs university-wide inflation factors
- Lower-level course demand at Ft. Worth campus
- Causal Machine Learning

• Be careful when interpreting predictive models in search of causal insights — SHAP latest documentation

Scan the QR code to complete the session

survey.

Texas Association for Institutional Research

Annual Conference: February 25-28, 2025 Omni Hotel in Corpus Christi, TX

