
/*** ***/

/* PROGRAM: PDP Submission

/* PURPOSE: Retrieve PDP information

/* PROGRAMMER: John Carroll

/* DATE: 12/15/2020

/* OUTPUT FILES: i_04229500PDP_Texas_AM_University_Central_Texas_Cohort_TermYYYY.txt

/* i_04229500PDP_Texas_AM_University_Central_Texas_Course_TermYYYY.txt

/* i_04229500PDP_Texas_AM_University_Central_Texas_Financial_Aid_TermYYYY.txt

/* Output data for TermYYYY.xlsx

/* REFERENCES: PDP-Submission-Guide sept2020.pdf

/*** ***/

%Let Term = ('201508', '201601', '201606'); /*Term of report*/

%Let OUTPUT_Term = Summer2016; /*Used in output file.*/

/*Used for Working papers. This should match terms used above in Term. Pulls data from CBMs to compare with PDP data from banner.*/

%Let Report_Terms = ((STU_RPT_YEAR = 2015 and STU_RPT_Sem = 1)or(STU_RPT_YEAR = 2016 and STU_RPT_Sem = 2)or(STU_RPT_YEAR = 2016 and STU_RPT_Sem = 3));

%Let Path = S:\Projects\IRA21_005 National Student Clearinghouse Postsecondary Data Partnership\Output; /*location of output files*/

%let Today = %sysfunc(today());

/*Country Codes used to Identify out of United States countries. For list of codes see PDP-Submission-Guide sept2020*/

%Let Country_Code = ('AX', 'AD', 'AE', 'AF', 'AG', 'AI', 'AL', 'AM', 'AN', 'AO', 'AQ', 'AR', 'AS', 'AT', 'AU', 'AW', 'AZ', 'BA', 'BB', 'BD', 'BE', 'BF',

 'BG', 'BH', 'BI', 'BJ', 'BL', 'BM', 'BN', 'BO', 'BQ', 'BR', 'BS', 'BT', 'BV', 'BW', 'BY', 'BZ', 'CA', 'CC', 'CD', 'CF', 'CG', 'CH',

 'CI', 'CK', 'CL', 'CM', 'CN', 'CO', 'CR', 'CU', 'CV', 'CW', 'CX', 'CY', 'CZ', 'DE', 'DJ', 'DK', 'DM', 'DO', 'DZ', 'EC', 'EE', 'EG',

 'EH', 'ER', 'ES', 'ET', 'FI', 'FJ', 'FK', 'FM', 'FO', 'FR', 'GA', 'GB', 'GD', 'GE', 'GF', 'GG', 'GH', 'GI', 'GL', 'GM', 'GN', 'GP',

 'GQ', 'GR', 'GS', 'GT', 'GU', 'GW', 'GY', 'HK', 'HM', 'HN', 'HR', 'HT', 'HU', 'ID', 'IE', 'IL', 'IM', 'IN', 'IO', 'IQ', 'IR', 'IS',

 'IT', 'JE', 'JM', 'JO', 'JP', 'KE', 'KG', 'KH', 'KI', 'KM', 'KN', 'KP', 'KR', 'KW', 'KY', 'KZ', 'LA', 'LB', 'LC', 'LI', 'LK', 'LR',

 'LS', 'LT', 'LU', 'LV', 'LY', 'MA', 'MC', 'MD', 'ME', 'MF', 'MG', 'MH', 'MK', 'ML', 'MM', 'MN', 'MO', 'MP', 'MQ', 'MR', 'MS', 'MT',

 'MU', 'MV', 'MW', 'MX', 'MY', 'MZ', 'NA', 'NC', 'NE', 'NF', 'NG', 'NI', 'NL', 'NO', 'NP', 'NR', 'NU', 'NZ', 'OM', 'PA', 'PE', 'PF',

 'PG', 'PH', 'PK', 'PL', 'PM', 'PN', 'PR', 'PS', 'PT', 'PW', 'PY', 'QA', 'RE', 'RO', 'RS', 'RU', 'RW', 'SA', 'SB', 'SC', 'SD', 'SE',

 'SG', 'SH', 'SI', 'SJ', 'SK', 'SL', 'SM', 'SN', 'SO', 'SR', 'SS', 'ST', 'SV', 'SX', 'SY', 'SZ', 'TC', 'TD', 'TF', 'TG', 'TH', 'TJ',

 'TK', 'TL', 'TM', 'TN', 'TO', 'TP', 'TR', 'TT', 'TV', 'TW', 'TZ', 'UA', 'UG', 'UM', 'US', 'UY', 'UZ', 'VA', 'VC', 'VE', 'VG', 'VI',

 'VN', 'VU', 'WF', 'WS', 'YE', 'YT', 'YU', 'ZA', 'ZM', 'ZW');

/*State Codes used to Identify United States states. For list of codes see PDP-Submission-Guide sept2020*/

%Let State_Code = ('AA', 'AB', 'AE', 'AK', 'AL', 'AP', 'AR', 'AS', 'AZ', 'BC', 'CA', 'CN', 'CO', 'CT', 'CZ', 'DC', 'DE', 'FC', 'FL', 'FM', 'FO', 'GA',

 'GU', 'HI', 'IA', 'ID', 'IL', 'IN', 'IQ', 'KS', 'KY', 'LA', 'MA', 'MB', 'MD', 'ME', 'MI', 'MN', 'MO', 'MP', 'MS', 'MT', 'MX', 'MX',

 'NB', 'NC', 'ND', 'NE', 'NF', 'NH', 'NJ', 'NL', 'NM', 'NR', 'NS', 'NT', 'NU', 'NV', 'NY', 'OH', 'OK', 'ON', 'OR', 'PA', 'PE', 'PQ',

 'PR', 'PW', 'QC', 'RI', 'SC', 'SD', 'SK', 'TN', 'TT', 'TX', 'UK', 'UT', 'VA', 'VI', 'VT', 'WA', 'WI', 'WV', 'WY', 'YT');

data person;

 input Program $ credential $ credential_provider $;

 datalines;

BSWSWK Y Other

BSNNURS Y Other

MEDMHCH Y Other

BAASBMGT Y Other

BAASBUOC Y Other

BAASBUS Y Other

BAASIT Y Other

BBAACC Y Other

BBAADMS Y Other

BBACIS Y Other

BBAECO Y Other

BBAFIN Y Other

BBAHRMG Y Other

BBAINTB Y Other

BBAMGMT Y Other

BBAMKTG Y Other

BSACC Y Other

BSADMS Y Other

BSAPSC Y Other

BSBA Y Other

BSCIS Y Other

BSCS Y Other

BSECO Y Other

BSFIN Y Other

BSMGMT Y Other

MBABA Y Other

MSACC Y Other

MSHRMG Y Other

MSISYS Y Other

MSMGLD Y Other

MSMGMT Y Other

MSOPL Y Other

RBAASBMGT Y Other

;

/*Cumulative GPA by term and level*/

Proc sql;

create table tbl_GPA as

 Select c.id,

 a.SHRTGPA_PIDM, /*Selection of fields from table a*/

 a.term_code,

 a.Level,

 sum(b.THOURS) as THOURS, /*Cumulative of Transfer hours from table b, grouping as per the definition defined in outer query group by statement and having clause*/

 sum(b.IHOURS) as IHOURS, /*Cumulative of Institutional hours from table b, grouping as per the definition defined in outer query group by statement and having clause*/

 sum(b.OHOURS) as OHOURS, /*Cumulative of Overall hours from table b, grouping as per the definition defined in outer query group by statement and having clause*/

 sum(b.TPOINTS) as TPOINTS, /*Cumulative of TPOINTS calculated in table b, grouping as per the definition defined in outer query group by statement and having clause*/

 sum(b.IPOINTS) as IPOINTS, /*Cumulative of IPOINTS calculated in table b, grouping as per the definition defined in outer query group by statement and having clause*/

 sum(b.OPOINTS) as OPOINTS, /*Cumulative of OPOINTS calculated in table b, grouping as per the definition defined in outer query group by statement and having clause*/

 (Calculated TPOINTS / CALCULATED THOURS) as TGPA, /*Calculating Transfer GPA using formula*/

 (Calculated IPOINTS / CALCULATED IHOURS) as IGPA, /*Calculating Transfer GPA using formula*/

 (Calculated OPOINTS / CALCULATED OHOURS) as OGPA /*Calculating Transfer GPA using formula*/

 From (select distinct /*Begin: Subquery to create table a*/

 SHRTGPA_PIDM,

 SHRTGPA_TERM_CODE as term_code,

 SHRTGPA_LEVL_CODE as Level from saturn.shrtgpa) as a /*End: Subquery to create table a*/

 left join (select SHRTGPA_PIDM, SHRTGPA_TERM_CODE as term_code, SHRTGPA_LEVL_CODE as Level, /*Begin: Subquery to create table b*/

 SUM(CASE WHEN SHRTGPA_GPA_TYPE_IND = 'T' then SHRTGPA_GPA_HOURS else 0 end) as THOURS, /*Summing Transfer GPA hours as per Group defined in the grouping fields in subquery*/

 SUM(CASE WHEN SHRTGPA_GPA_TYPE_IND = 'I' then SHRTGPA_GPA_HOURS else 0 end) as IHOURS, /*Summing Institutional GPA hours as per Group defined in the grouping fields in

subquery*/

 SUM(CASE WHEN SHRTGPA_GPA_TYPE_IND = 'T' then SHRTGPA_QUALITY_POINTS else 0 end) as TPOINTS, /*Summing Institutional GPA hours as per Group defined in the grouping fields in

subquery*/

 SUM(CASE WHEN SHRTGPA_GPA_TYPE_IND = 'I' then SHRTGPA_QUALITY_POINTS else 0 end) as IPOINTS, /*Summing Transfer GPA hours as per Group defined in the grouping fields in

subquery*/

 SUM(CALCULATED THOURS, CALCULATED IHOURS) as OHOURS,

 SUM(CALCULATED TPOINTS, CALCULATED IPOINTS) as OPOINTS

 from saturn.shrtgpa

 group by SHRTGPA_PIDM, SHRTGPA_TERM_CODE, SHRTGPA_LEVL_CODE)

 as b on a.SHRTGPA_PIDM = b.SHRTGPA_PIDM /*End: Subquery to create table b*/

 and a.TERM_CODE ge b.TERM_CODE /* Note: Check if this is equal sign or ge*/

 and a.LEVEL = b.LEVEL

 left join edw.pidm_to_id as c on a.SHRTGPA_PIDM = c.pidm /*Cross list of pidms and ids*/

 group by c.id, a.SHRTGPA_PIDM, a.TERM_CODE, a.LEVEL

 having abs(Input(a.TERM_CODE, 6.) /*having clause will subset observations of the group by obeying the specified condition*/

 - input(b.TERM_CODE, 6.)) = min(abs(input(a.TERM_CODE, 6.) - input(b.TERM_CODE, 6.))) /* Cumulative is performed based on this condition, which is starting term in the

group*/

 order by a.SHRTGPA_PIDM, a.TERM_CODE, a.LEVEL

; quit;

/* Student Financial Aid */

proc sql;

create table M014_2 as

 select Distinct

 c.ID,

 h.STUDENT_LEVEL as Level_Cde 'Level Code',

 h.STUDENT_LEVEL_DESC as Level 'Level',

 a.RPRATRM_PIDM as PIDM Label 'PIDM',

 a.RPRATRM_PERIOD as Term Label 'Term',

 a.RPRATRM_FUND_CODE as Fund_Code 'Fund Code', /*Added 7-13-2020*/

 case when substr(a.RPRATRM_PERIOD, 5, 6) = '08' then Catx('-', input(substr(a.RPRATRM_PERIOD, 1, 4), 4.), input(substr(a.RPRATRM_PERIOD, 1, 4), 4.)+1)

 else Catx('-', input(substr(a.RPRATRM_PERIOD, 1, 4), 4.)-1, input(substr(a.RPRATRM_PERIOD, 1, 4), 4.)) end as Aid_Year,

 f.RTVFTYP_DESC as Type label 'Type',

 g.RTVFSRC_DESC as Source label 'Source',

 a.RPRATRM_ACCEPT_AMT as Amount label 'Amount',

 case when d.RFRASPC_NA_REQD_IND = "Y" then 'Need-Based'

 else 'Merit-Based' end as Need Label 'Need'

 from faismgr.rpratrm as a

 left join faismgr.rFrbase as b on a.RPRATRM_FUND_CODE = b.RFRBASE_FUND_CODE

 left join FAISMGR.RFRASPC as d on a.RPRATRM_FUND_CODE = d.RFRASPC_FUND_CODE and a.RPRATRM_AIDY_CODE = d.RFRASPC_AIDY_CODE

 left join FAISMGR.RTVFTYP as f on b.RFRBASE_FTYP_CODE = f.RTVFTYP_CODE

 left join FAISMGR.RTVFSRC as g on b.RFRBASE_FSRC_CODE = g.RTVFSRC_CODE

 Left Join edw.PIDM_TO_ID as c on a.RPRATRM_PIDM = c.PIDM

 Left Join (select Distinct

 ID,

 ACADEMIC_PERIOD,

 STUDENT_LEVEL,

 STUDENT_LEVEL_DESC

 From ODSMGR.ACADEMIC_STUDY

 Where PRIMARY_PROGRAM_IND = "Y") as h on c.Id = h.ID and a.RPRATRM_PERIOD = h.ACADEMIC_PERIOD

 where a.RPRATRM_ACCEPT_AMT > 0;

quit;

Proc SQL;

create table M014_1 as

 select Distinct

 c.ID,

 h.STUDENT_LEVEL as Level_Cde 'Level Code',

 h.STUDENT_LEVEL_DESC as Level 'Level',

 b.TBRACCD_PIDM as PIDM Label 'PIDM',

 b.TBRACCD_TERM_CODE as Term Label 'Term',

 a.TBBDETC_DETAIL_CODE as Fund_Code 'Fund Codes', /*added 7-13-2020*/

 case when substr(b.TBRACCD_TERM_CODE, 5, 6) = '08' then Catx('-', input(substr(b.TBRACCD_TERM_CODE, 1, 4), 4.), input(substr(b.TBRACCD_TERM_CODE, 1, 4), 4.)+1)

 else Catx('-', input(substr(b.TBRACCD_TERM_CODE, 1, 4), 4.)-1, input(substr(b.TBRACCD_TERM_CODE, 1, 4), 4.)) end as Aid_Year,

 case when TBBDETC_DCAT_CODE = 'EXM' or TBBDETC_DETAIL_CODE = '30042' then 'Exemption'

 when TBBDETC_DETAIL_CODE in ('3000', '3002', '3004', '3006', '3008', '3014', '3026', '3038', '3044') then 'Military'

 else 'Waiver' end as Exemption_Waiver,

 a.TBBDETC_DESC as Exemption_Waiver_Desc label 'Exemption_Waiver_Desc',

 'Merit-Based' as Need,

 Sum(b.TBRACCD_AMOUNT) as Amount

 from (select TBBDETC_DETAIL_CODE,

 TBBDETC_DESC,

 TBBDETC_DCAT_CODE

 from TAISMGR.TBBDETC

 where TBBDETC_DESC contains ')-W' or TBBDETC_DESC contains 'Waiver' or TBBDETC_DCAT_CODE = 'EXM'

 or TBBDETC_DETAIL_CODE in ('3000', '3002', '3004', '3006', '3008', '3014', '3026', '3038', '3042', '3044')) as a

 left join TAISMGR.TBRACCD as b on a.TBBDETC_DETAIL_CODE = b.TBRACCD_DETAIL_CODE

 Left Join edw.PIDM_TO_ID as c on b.TBRACCD_PIDM = c.PIDM

 Left Join (select Distinct

 ID,

 ACADEMIC_PERIOD,

 STUDENT_LEVEL,

 STUDENT_LEVEL_DESC

 From ODSMGR.ACADEMIC_STUDY

 Where PRIMARY_PROGRAM_IND = "Y") as h on c.Id = h.ID and b.TBRACCD_TERM_CODE = h.ACADEMIC_PERIOD

 where PIDM Ne .

 group by b.TBRACCD_PIDM, b.TBRACCD_TERM_CODE, Exemption_Waiver, Exemption_Waiver_Desc

 Having amount >=1;

Quit;

Data M014; set M014_2 M014_1; Run;

Data Tasklist; /*Create Table for all Tasks to be inserted into*/ Format Report $20. Student $20. Task $2000. Ref $20.; Run;

Proc SQL; /*List of all undergraduate Students and calculate the term they first started taking courses with us. This This is the base list for the cohort report.*/

 Create Table Cohort as

 Select Distinct

 PERSON_UID,

 ID,

 ACADEMIC_PERIOD as Cohort_Period,

 ACADEMIC_YEAR_DESC as Cohort_Desc,

 SubStr(ACADEMIC_YEAR_DESC, 1, 4)||'-'||SubStr(ACADEMIC_YEAR_DESC, 8, 2) as Cohort /*Cohort created to match PDP requirements.*/

 From ODSMGR.STUDENT_COURSE

 Where INSTITUTION_COURSE_IND = 'Y' and

 COURSE_LEVEL NE 'GR'

 Group by ID

 Having ACADEMIC_PERIOD = min(ACADEMIC_PERIOD)

 ; Quit;

Proc SQL; /*List of all undergraduate Students who took a courses during the term. This is the base list for the course report.*/

 Create Table Students as

 Select Distinct

 ID,

 ACADEMIC_PERIOD,

 ACADEMIC_YEAR_DESC,

 SubStr(ACADEMIC_YEAR_DESC, 1, 4)||'-'||SubStr(ACADEMIC_YEAR_DESC, 8, 2) as Academic_Year

 From ODSMGR.STUDENT_COURSE

 Where ACADEMIC_PERIOD in &Term and

 INSTITUTION_COURSE_IND = 'Y' and

 COURSE_LEVEL NE 'GR'

 ; Quit;

Proc SQL; /*Identifies students receiving Pell*/

 Create table Pell as

 Select Distinct

 ID,

 Term,

 'Y' as Pell

 From M014

 Where Fund_Code = 'FPELL'

 Group by ID,

 term;

Quit;

Proc SQL; /*Returns ISIR data for all students by aid Year. one row per person per aid year*/

 Create Table ISIR as

 Select Distinct

 ID,

 Substr(AID_YEAR_DESC, 1, 9) as Aid_Year,

 'Y' as ISIR,

 ADJUSTED_GROSS_INCOME,

 HOUSING,

 FM_INAS,

 DEPENDENCY_INDEPEND,

 HOUSING,

 Housing_Desc,

 Put(PELL_EFC, 8.) as PELL_EFC,

 Put(FAMILY_SIZE, 8.) as NoDepdents

 From ODSMGR.NEED_ANALYSIS

 Where CURRENT_RECORD_IND = 'Y'

 Group By ID, AID_YEAR_DESC;

Quit;

Proc SQL; /*Total tuition students was charged per year. One Row Per Student Per Academic Year*/

 Create Table Tuition as

 Select Distinct

 ID,

 ACADEMIC_YEAR_DESC,

 Sum(AMOUNT) as total_Tutition

 from ODSMGR.RECEIVABLE_ACCOUNT_DETAIL

 Where DETAIL_CODE_TYPE = 'C'

 Group by ID,

 ACADEMIC_YEAR_DESC

; Quit;

data Races; /*Get race information and format for report. One row per person */

 Length Race $2.;

 set GENERAL.GORPRAC;

 by GORPRAC_PIDM;

 length Race_new $200;

 Race = 'UK';

 if GORPRAC_RACE_CDE = 'WH' then Race = 'W';

 if GORPRAC_RACE_CDE = 'AS' then Race = 'AN';

 if GORPRAC_RACE_CDE = 'BL' then Race = 'B';

 if GORPRAC_RACE_CDE = 'HA' then Race = 'HP';

 if GORPRAC_RACE_CDE = 'IN' then Race = 'IA';

 retain Race_new;

 Race_new=ifc(first.GORPRAC_PIDM, RACE, catx('|', Race_new, RACE));

 if last.GORPRAC_PIDM then output;

 Keep GORPRAC_PIDM

 Race_new;

run;

/*1 = No High School, 3 = Some High School, no diploma, 4 = High School diploma or GED, 6 = Some college, 7 Associate/two-year degree

 8 = Bachelor’s/four-year degree, 13 = Graduate/Professional degree

 0 Unknown or not applicable

 - These data were sourced from ApplyTexas prior to omitting the item from the report in Fall 2018*/

Proc SQL;

 Create Table First_Gen as

 select Distinct

 ID,

 person_uid,

 max(case when application_info1 in ('01', '03', '04') and application_info2 in ('01', '03', '04') then 1

 when application_info1 in ('06') or application_info2 in ('06') then 2

 when application_info1 in ('07') or application_info2 in ('07') then 3

 when application_info1 in ('08', '13') or application_info2 in ('08', '13') then 4

 else 0 end) as first_gen

 from odsmgr.admissions_application

 group by person_uid

; Quit;

Proc SQL; /*Get Identifying information for student. One row per student per semester*/

 Create Table Identifying_Information as

 Select Distinct

 b.ID,

 a.PERSON_UID,

 a.Cohort_Period,

 SubStr(b.ACADEMIC_YEAR_DESC, 1, 9) as Aid_Year,

 i.STUDENT_LEVEL,

 a.Cohort,

 Case When SubStr(a.Cohort_Period, 5, 2) = '01' then 'Spring'

 When SubStr(a.Cohort_Period, 5, 2) = '06' then 'Summer'

 When SubStr(a.Cohort_Period, 5, 2) = '08' then 'Fall'

 Else 'X' end as Cohort_Term,

 put(Datepart(c.STVTERM_START_DATE), YYMMDDn8.) as CohortTermBeginDate,

 Put(Datepart(c.STVTERM_END_DATE), YYMMDDn8.) as CohortTermEndDate,

 Case When substr(d.TAX_ID, 1, 1) in ('9') then ''

 Else d.TAX_ID end as SSN 'SSN',

 CAse When substr(d.TAX_ID, 1, 1) in ('9') then d.TAX_ID

 Else '' end as ITIN,

 b.ID as Student_ID,

 d.FIRST_NAME,

 d.MIDDLE_NAME,

 d.LAST_NAME,

 d.NAME_SUFFIX, /*Used in Course Data not in Cohort Data*/

 Case When Length(k.STREET_LINE1) < 2 then 'UK'

 Else Coalesce(Strip(k.STREET_LINE1), 'UK') end as STREET_LINE1 length = 30,

 k.STREET_LINE2 length = 30,

 coalesce(k.City, 'UK') as City,

 coalesce(k.STATE_PROVINCE, 'UK') as State,

 k.POSTAL_CODE,

 Case When k.NATION in &Country_Code then k.NATION

 When k.STATE_PROVINCE in &State_Code then 'US'

 Else 'UK' end as Country,

 put(Datepart(d.BIRTH_DATE), YYMMDDn8.) as BirthDate,

 d.PHONE_NUMBER_COMBINED, /*Used in Course Data not in Cohort Data*/

 d.EMAIL_ADDRESS, /*Used in Course Data not in Cohort Data*/

 Case When d.HISPANIC_LATINO_ETHNICITY_IND = 'Y' then 'H'

 When d.HISPANIC_LATINO_ETHNICITY_IND = 'N' then 'N'

 Else 'UK' end as Ethnicity,

 Coalesce(e.Race_new, "UK") as Race,

 'OPEID' as Institution_ID_Type,

 '04229500' as Institution_ID,

 j.credential,

 j.credential_provider

 From Cohort as a

 Left Join ODSMGR.STUDENT as b on a.PERSON_UID = b.PERSON_UID and a.Cohort_Period = b.ACADEMIC_PERIOD

 Left Join SATURN.STVTERM as c on a.Cohort_Period = c.STVTERM_CODE

 Left Join ODSMGR.PERSON as d on b.ID = d.ID

 Left Join Races as e on a.PERSON_UID = e.GORPRAC_PIDM

 Left Join (Select Distinct

 PERSON_UID,

 ACADEMIC_PERIOD,

 STUDENT_LEVEL,

 PROGRAM

 From ODSMGR.ACADEMIC_STUDY

 Where PRIMARY_PROGRAM_IND = 'Y') as i on a.PERSON_UID = i.PERSON_UID and a.Cohort_Period = i.ACADEMIC_PERIOD

 Left Join tbl_GPA as h on d.ID = h.Id and a.Cohort_Period = h.Term_code and i.STUDENT_LEVEL = h.LEVEL

 Left Join Program_Accreditation as j on i.PROGRAM = j.PROGRAM

 Left Join (Select Distinct

 id,

 Tranwrd(STREET_LINE1, ', ', ' ') as STREET_LINE1 Length = 30,

 Tranwrd(STREET_LINE2, ', ', ' ') as STREET_LINE2 Length = 30,

 Tranwrd(CITY, ', ', ' ') as City Length = 20,

 STATE_PROVINCE,

 POSTAL_CODE,

 NATION

 From (select *,

 Case When PREFERRED_ADDRESS_IND = "Y" then 1 Else 0 End as Pref_Ind

 from ODSMGR.ADDRESS m

 Where m.address_status_ind is null

 and datepart(m.address_start_date) <= "&SYSDATE9"d <= coalesce(datepart(m.address_end_date), '31DEC2099'd)

 Group by id

 Having Address_Number = max(address_Number))

 Where address_type in ('MA', 'PA')

 Group by Id

 Having Pref_Ind = Max(Pref_Ind)) as K on a.ID = k.ID

 Where b.ID is not missing and i.Student_Level = 'UG'

; Quit;

Proc SQL; /*Get students High school information one row per person */

 Create Table High_School_Information as

 Select Distinct

 ID,

 Case when SECONDARY_DIPLOMA in ('DS', 'ST') then 'D' Else '' end as HS_Completion_Status,

 put(Datepart(SECONDARY_SCHOOL_GRAD_DATE), YYMMDDn8.) as HS_Completion_Year,

 case when SCHOOL_GPA > '4.00' Then '' else SCHOOL_GPA end as HS_Unweighted_GPA 'HS_Unweighted_GPA',

 '' as HS_Weighted_GPA

 From ODSMGR.PREVIOUS_EDUCATION

 Where INSTITUTION_TYPE_DESC = 'High School' and REQUIREMENT = 'HST1' and SECONDARY_DIPLOMA is not missing

; Quit;

Proc SQL; /*Get student enrollment and GPA data for when students started at institution. one row per person*/

 Create Table Enrollment_Info as

 Select Distinct

 a.ID,

 a.SHRTGPA_PIDM,

 a.term_code,

 Case when b.first_gen = 1 then 'N'

 when b.first_gen = 2 then 'P'

 when b.first_gen = 3 then 'A'

 when b.first_gen = 4 then 'B'

 else '' end as First_Gen,

 '' as Dual_and_Summer_Enrollment,

 Case When STUDENT_POPULATION = 'N' then 'F'

 Else 'T' end as Enrollment_Type,

 Coalesce(a.Thours, 0) as T_Hours 'Number of College Credits Attempted to Transfer',

 Coalesce(a.Thours, 0) as Hours_Accepted,

 Case When d.SZRTXSI_MATH_OBLIG_MET = 'Y' then 'C'

 When d.SZRTXSI_MATH_OBLIG_MET = 'N' then d.SZRTXSI_MATH_OBLIG_MET

 Else 'UK' end as Math,

 Case When d.SZRTXSI_WRTG_OBLIG_MET = 'Y' then 'C'

 When d.SZRTXSI_WRTG_OBLIG_MET = 'N' then d.SZRTXSI_WRTG_OBLIG_MET

 Else 'UK' end as ENGLISH,

 'N' as G_Math,

 'N' as G_English

 From tbl_GPA as a

 Left Join First_gen as b on b.ID = a.ID

 Left Join ODSMGR.ACADEMIC_STUDY as c on c.ID = a.ID and c.ACADEMIC_PERIOD = a.Term_Code

 Left Join (Select * from TXCNMGR.SZRTXSI group by SZRTXSI_PIDM having SZRTXSI_SEQ_NO = min(SZRTXSI_SEQ_NO)) as d on a.SHRTGPA_PIDM = d.SZRTXSI_PIDM

 Where Level = 'UG' and PRIMARY_PROGRAM_IND = "Y"

; Quit;

Proc SQL; /*Get academic term information. one row per person, per term.*/

 Create Table Academic_Term_Information as

 Select Distinct

 a.ID,

 a.ACADEMIC_PERIOD,

 a.ACADEMIC_STUDY_VALUE as STUDENT_LEVEL,

 /*Academic Term Information*/

 'NA' as CompleteDevMath,

 'NA' as CompleteDevEnglish,

 'N' as TTransferIntent,

 Case when AWARD_CATEGORY = '24' then 'B'

 when AWARD_CATEGORY = '42' then 'M'

 Else 'UK' end as DegreeTypeSought,

 Put(a.GPA, 8.2) as Sem_GPA,

 Put(c.OGPA, 8.2) as Overall_GPA

 From ODSMGR.GPA_BY_TERM as a

 Left Join ODSMGR.ACADEMIC_STUDY as b on a.id = b.ID and a.Academic_Period = b.Academic_Period and PRIMARY_PROGRAM_IND = 'Y'

 Left Join tbl_GPA as c on a.ID = c.ID and a.ACADEMIC_PERIOD = c.Term_Code and a.ACADEMIC_STUDY_VALUE = c.Level

 Where a.ACADEMIC_STUDY_VALUE = 'UG' and a.GPA_TYPE = 'I'

; Quit;

Proc SQL; /*Get course data for the courses student attended during given period*/

 Create Table Course_Information as

 Select Distinct

 a.ID,

 a.ACADEMIC_PERIOD,

 a.ACADEMIC_YEAR_DESC,

 Case when f.STUDENT_CLASSIFICATION = 'GR' then 'GR' Else 'UG' end as Student_Level,

 SubStr(a.ACADEMIC_YEAR_DESC, 1, 4)||'-'||SubStr(a.ACADEMIC_YEAR_DESC, 8, 2) as Academic_Year,

 Case When Substr(a.ACADEMIC_PERIOD, 5, 2) = '08' then 'Fall'

 When Substr(a.ACADEMIC_PERIOD, 5, 2) = '01' then 'Spring'

 When Substr(a.ACADEMIC_PERIOD, 5, 2) = '06' then 'Summer'

 Else "UK" end as Term,

 Compress(a.SUBJECT) as Subject,

 a.COURSE_NUMBER,

 a.COURSE_REFERENCE_NUMBER,

 a.COURSE_TITLE_SHORT,

 c.COURSE_TEXT_NARRATIVE format = $255.,

 Catx(".", Substr(c.PROGRAM_CLASSIFICATION, 1, 2), Substr(c.PROGRAM_CLASSIFICATION, 3, 4)) as PROGRAM_CLASSIFICATION,

 Case When a.COURSE_LEVEL = 'UG' then 'CU'

 When a.COURSE_LEVEL = 'GR' then 'CG'

 Else 'O' end as Course_Type,

 'NA' as GateWayCourse,

 'N' as CoRequisite,

 Put(Datepart(a.START_DATE), YYMMDDn8.) as CourseBeginDate,

 Put(Datepart(a.END_DATE), YYMMDDn8.) as CourseEndDate,

 Case When a.FINAL_GRADE in ('A') then '4'

 When a.FINAL_GRADE in ('B') then '3'

 When a.FINAL_GRADE in ('C') then '2'

 When a.FINAL_GRADE in ('D') then '1'

 When a.FINAL_GRADE in ('F', 'FN', 'FS') then '0'

 When a.FINAL_GRADE in ('I', 'P', 'W') then a.FINAL_GRADE

 When a.FINAL_GRADE in ('AU') then 'A'

 When a.FINAL_GRADE in ('NP', 'U') then 'F'

 When a.FINAL_GRADE in ('IP') then 'I'

 When a.FINAL_GRADE in ('N', 'NG') then 'O'

 When a.FINAL_GRADE in ('S') then 'P'

 When a.FINAL_GRADE in ('Q', 'WF') then 'W'

 Else 'O' end as Grade,

 Put(a.CREDITS_ATTEMPTED, 8.2) as CREDITS_ATTEMPTED,

 Put(a.CREDITS_EARNED, 8.2) as CREDITS_EARNED,

 Case when a.INSTRUCTION_METHOD = '1' then 'F'

 when a.INSTRUCTION_METHOD = '2' then 'O'

 Else 'H' end as Delivery_Method,

 'N' as Core_Course,

 '' as Core_Course_Type,

 '' as Core_Competency_Completed,

 put(d.OHOURS, 8.) as OHOURS,

 '1' as Purpose_of_Course_Exchange,

 'N' as Cert_Endorsed,

 '' as Cert_Industry,

 Put(Datepart(a.FINAL_GRADE_DATE), YYMMDDn8.) as Grade_Effective_Date,

 'OPEID' as DGI_ID_TYPE,

 '04229500' as DGI_ID,

 a.ID as DGI_Stu_ID

 From ODSMGR.STUDENT_COURSE As a

 Left Join ODSMGR.COURSE_CATALOG as c on a.COURSE_IDENTIFICATION = c.COURSE_IDENTIFICATION and a.ACADEMIC_PERIOD = c.ACADEMIC_PERIOD

 Left Join tbl_GPA as d on a.ID = d.ID and a.ACADEMIC_PERIOD = d.Term_Code

 Left Join ODSMGR.STUDENT as f on a.id = f.id and a.ACADEMIC_PERIOD = f.ACADEMIC_PERIOD

 Where a.INSTITUTION_COURSE_IND = 'Y' and a.COURSE_LEVEL = 'UG' and a.ACADEMIC_PERIOD in &Term

; Quit;

Proc SQL; /*Get FASFA data for student. One row per person per aid_year*/

 Create Table FASFA_Information as

 Select a.ID,

 a.Aid_Year,

 SubStr(a.Aid_Year, 1, 4)||'-'||SubStr(a.Aid_Year, 8, 2) as Academic_Year,

 Coalesce(a.ISIR, 'N') as Applied_Aid,

 a.DEPENDENCY_INDEPEND,

 Put(coalesce(a.ADJUSTED_GROSS_INCOME, 0), 8.) as ADJUSTED_GROSS_INCOME,

 a.Housing,

 '0' as Room,

 '0' as Board,

 '0' as Books,

 '0' as Other_exp,

 a.PELL_EFC,

 Case When e.MARITAL_STATUS = 'S' then '1'

 When e.MARITAL_STATUS = 'M' then '2'

 When e.MARITAL_STATUS = 'P' then '3'

 When e.MARITAL_STATUS in ('D', 'W') then '4'

 Else '' end as Marital_Status,

 a.NoDepdents

 From ISIR as a

 Left Join ODSMGR.PERSON as e on a.id = e.id

; Quit;

Proc SQL; /*Get grants and load data for each student by academic year.*/

 Create Table Grant_Loans as

 Select ID,

 Level_Cde,

 AID_YEar,

 Sum(Case When Fund_Code = 'FSEOG' then Amount Else 0 end) as SEOG,

 Sum(Case When Fund_Code in ('FTEACG', 'FTEACU') then Amount Else 0 end) as TEACH,

 Sum(Case When Exemption_Waiver = 'Military' then Amount Else 0 end) as Military,

 Sum(Case When Source = 'Federal' and Type = 'Grant' and FUND_CODE not in ('FSEOG', 'FTEACG', 'FTEACU', 'FPELL') then Amount Else 0 end) as FGO,

 Sum(Case When Fund_Code = 'FPELL' then Amount Else 0 end) as Pell,

 Sum(Case When Source = 'State' and Type = 'Grant' and Need = 'Need-Based' then Amount Else 0 end) as SGN,

 Sum(Case When Source = 'State' and Type = 'Grant' and Need = 'Merit-Based' then Amount Else 0 end) as SGM,

 Sum(Case When Source = 'Institutional' and Type = 'Grant' and Need = 'Need-Based' then Amount Else 0 end) as IGN,

 0 as INST_Grant_Employ,

 Sum(Case When Source = 'Institutional' and Type = 'Grant' and Need = 'Merit-Based' then Amount Else 0 end) as IGM,

 0 as INST_Grant_Mil,

 0 as INST_Grant_Other,

 0 as Grant_Other,

 Sum(Case When Source = 'Federal' and Type = 'Loan' and FUND_CODE not in ('FPLUS', 'FGPLS', 'FGPLSS', 'ZPLUS', 'ZPLSM') then Amount Else 0 end) as FLO,

 Sum(Case When Source = 'State' and Type = 'Loan' then Amount Else 0 end) as SL,

 Sum(Case When Source = 'Institutional' and Type = 'Loan' then Amount Else 0 end) as IL,

 Sum(Case When FUND_CODE in ('FPLUS', 'FGPLS', 'FGPLSS', 'ZPLUS', 'ZPLSM') then Amount Else 0 end) as PLUS,

 Sum(Case When Source = 'External' and Type = 'Loan' then Amount Else 0 end) as EL,

 Sum(Case When Source = 'Federal' and Type = 'Work' then Amount Else 0 end) as FW,

 Sum(Case When Source = 'State' and Type = 'Work' then Amount Else 0 end) as SW,

 Sum(Case When Source = 'Institutional' and Type = 'Work' then Amount Else 0 end) as IW,

 Sum(Amount) as Total_Aid,

 Case When Sum(Amount) - calculated SEOG - calculated TEACH - calculated Military - calculated FGO - calculated Pell - calculated SGN - calculated SGM - calculated IGN

 - calculated IGM - calculated FLO - calculated SL - calculated PLUS - calculated EL - calculated FW - calculated SW - calculated IW > 0.00 then

 Sum(Amount) - calculated SEOG - calculated TEACH - calculated Military - calculated FGO - calculated Pell - calculated SGN - calculated SGM - calculated IGN

 - calculated IGM - calculated FLO - calculated SL - calculated PLUS - calculated EL - calculated FW - calculated SW - calculated IW

 Else 0 end as Other

 From M014

 Where Level_Cde = 'UG'

 Group by ID,

 Level_Cde,

 AID_YEar

; Quit;

/*** Cohort Report ***/

Proc SQL; /*Combine sections to create Cohort Data*/

 Create Table Cohort_Data_File as

 Select Distinct

 a.ID,

 /*Identifying Information*/

 'D1' as CH1,

 b.Cohort,

 b.Cohort_Term,

 b.CohortTermBeginDate,

 b.CohortTermEndDate,

 b.SSN,

 b.ITIN,

 b.Student_ID,

 b.FIRST_NAME,

 b.MIDDLE_NAME,

 b.LAST_NAME,

 Coalesce(b.STREET_LINE1, 'UK') as STREET_LINE1,

 b.STREET_LINE2,

 Coalesce(b.City, 'UK') as City,

 Coalesce(b.State, 'UK') as State,

 b.POSTAL_CODE,

 b.Country,

 b.BirthDate,

 b.Ethnicity,

 b.Race,

 b.Institution_ID_Type,

 b.Institution_ID,

 /*High School Information*/

 c.HS_Completion_Status,

 c.HS_Completion_Year,

 c.HS_Unweighted_GPA,

 c.HS_Weighted_GPA,

 /*Enrollment Information*/

 d.First_Gen,

 d.Dual_and_Summer_Enrollment,

 d.Enrollment_Type,

 d.T_Hours,

 d.Hours_Accepted,

 d.Math,

 d.English,

 d.G_Math,

 d.G_English

 From Students as a

 Left Join Identifying_Information as b on a.ID = b.ID

 Left Join High_School_Information as c on a.ID = c.ID

 Left Join Enrollment_Info as d on a.ID = d.ID and b.Cohort_Period = d.term_code

 Where b.Cohort is not missing and b.Cohort_Period in &Term

; Quit;

/**************** Cohort Task list Start ****************/

Proc SQL;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Cohort' as task, 'Cohort.2.1' as Ref

 From Cohort_Data_File

 Where Cohort is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Cohort Term Begin Date' as task, 'Cohort.4.1' as Ref

 From Cohort_Data_File

 Where CohortTermBeginDate is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Cohort Term End Date' as task, 'Cohort.5.1' as Ref

 From Cohort_Data_File

 Where CohortTermEndDate is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'SSN cannot be blank if Student ID is blank' as task, 'Cohort.6.1' as Ref

 From Cohort_Data_File

 Where SSN is missing and Student_ID is Missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field First Name' as task, 'Cohort.9.1' as Ref

 From Cohort_Data_File

 Where First_Name is Missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Last Name' as task, 'Cohort.11.1' as Ref

 From Cohort_Data_File

 Where Last_Name is Missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Street Line 1' as task, 'Cohort.12.1' as Ref

 From Cohort_Data_File

 Where STREET_LINE1 is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field City' as task, 'Cohort.14.1' as Ref

 From Cohort_Data_File

 Where City is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field State' as task, 'Cohort.15.1' as Ref

 From Cohort_Data_File

 Where State is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Country' as task, 'Cohort.17.1' as Ref

 From Cohort_Data_File

 Where Country is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Date of Birth' as task, 'Cohort.18.1' as Ref

 From Cohort_Data_File

 Where BirthDate is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Ethnicity' as task, 'Cohort.19.1' as Ref

 From Cohort_Data_File

 Where Ethnicity is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Race' as task, 'Cohort.20.1' as Ref

 From Cohort_Data_File

 Where Race is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Institution ID Type' as task, 'Cohort.21.1' as Ref

 From Cohort_Data_File

 Where Institution_ID_Type is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Institution ID' as task, 'Cohort.22.1' as Ref

 From Cohort_Data_File

 Where Institution_ID is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Enrollment Type' as task, 'Cohort.29.1' as Ref

 From Cohort_Data_File

 Where Enrollment_Type is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Math Placement' as task, 'Cohort.32.1' as Ref

 From Cohort_Data_File

 Where Math is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field English Placement' as task, 'Cohort.33.1' as Ref

 From Cohort_Data_File

 Where English is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Gateway Math Status' as task, 'Cohort.34.1' as Ref

 From Cohort_Data_File

 Where G_Math is missing;

 Insert into Tasklist

 Select 'Cohort' as Report, ID as Student, 'Student is missing required field Gateway English Status' as task, 'Cohort.35.1' as Ref

 From Cohort_Data_File

 Where G_English is missing;

Quit;

/**************** Task list End ****************/

/**************** Export Cohort Data into Spreadsheet for review ****************/

Proc Export data = Cohort_Data_File outfile = "&Path\Ouput data for &OUTPUT_Term..XLSX" label DBMS = xlsx Replace;

 Sheet = "Cohort";

Run;

Data Cohort_Output; /*Cohort report header*/

 Length output $2000.;

 Output = 'DCE01, 10073232, 042295, 00, , , , , '||put("&SYSDATE"d, YYMMDDn8.)||", , &OUTPUT_Term, , , , ";

Run;

Proc SQL;

 Insert into Cohort_Output

 Values('CH1, Cohort, Cohort Term, Cohort Term Begin Date, Cohort Term End Date, SSN, ITIN, Student ID, First Name, Middle Name, Last Name, Street Line 1, Street Line 2,

 City, State, Zip/Postal Code, Country, Date of Birth, Ethnicity, Race, Institution ID Type, Institution ID, HS Completion Status, HS Completion Year, HS Unweighted GPA,

 HS Weighted GPA, First Gen, Dual and Summer Enrollment, Enrollment Type, Number of College Credits Attempted to Transfer, Number of College Transfer Credits Accepted,

 Math Placement, English Placement, Gateway Math Status, Gateway English Status')

; Quit;

Proc SQL; /*Cohort Report Body*/

 Insert into Cohort_Output

 Select Strip(CH1)||", "||

 Strip(Cohort)||", "||

 Strip(Cohort_Term)||", "||

 strip(CohortTermBeginDate)||", "||

 Strip(CohortTermEndDate)||", "||

 Strip(SSN)||", "||

 Strip(ITIN)||", "||

 Strip(Student_ID)||", "||

 Strip(FIRST_NAME)||", "||

 Strip(MIDDLE_NAME)||", "||

 Strip(LAST_NAME)||", "||

 Strip(STREET_LINE1)||", "||

 Strip(STREET_LINE2)||", "||

 Strip(City)||", "||

 Strip(State)||", "||

 Strip(POSTAL_CODE)||", "||

 Strip(Country)||", "||

 strip(BirthDate)||", "||

 Strip(Ethnicity)||", "||

 Strip(Race)||", "||

 Strip(Institution_ID_Type)||", "||

 Strip(Institution_ID)||", "||

 Strip(HS_Completion_Status)||", "||

 Strip(HS_Completion_Year)||", "||

 Strip(HS_Unweighted_GPA)||", "||

 Strip(HS_Weighted_GPA)||", "||

 Strip(First_Gen)||", "||

 Strip(Dual_and_Summer_Enrollment)||", "||

 Strip(Enrollment_Type)||", "||

 strip(put(T_Hours, 8.))||", "||

 Strip(put(Hours_Accepted, 8.))||", "||

 Strip(Math)||", "||

 Strip(English)||", "||

 Strip(G_Math)||", "||

 Strip(G_English) as Output

 From Cohort_Data_File;

Quit;

Proc SQL; /*Cohort report footer*/

 Insert into Cohort_Output

 Select "T1, "||strip(Put(Count(*)+3, 8.))||", " as Output

 From Cohort_Data_File;

Quit;

Proc Export data = Cohort_Output outfile = "&Path\i_04229500PDP_Texas_AM_University_Central_Texas_Cohort_&OUTPUT_Term..Txt" label DBMS = Tab Replace; putnames = No;

Run;

Proc SQL; /*Combine sections to create Course Data*/

 Create Table Course_Data_File as

 Select Distinct

 a.ID,

 e.ACADEMIC_PERIOD,

 Catx('-', e.SUBJECT, e.COURSE_NUMBER, e.COURSE_REFERENCE_NUMBER) as Course,

 /*Identifying Information*/

 'D1' as CH1,

 b.Cohort,

 b.Cohort_Term,

 /*Course Data*/

 e.Academic_Year,

 e.Term,

 /*End Course Data*/

 b.Institution_ID_Type,

 b.Institution_ID,

 b.SSN,

 b.ITIN,

 b.Student_ID,

 b.FIRST_NAME,

 b.MIDDLE_NAME,

 b.LAST_NAME,

 b.NAME_SUFFIX,

 Coalesce(b.STREET_LINE1, 'UK') as Street_Line1,

 b.STREET_LINE2,

 Coalesce(b.City, 'UK') as City,

 Coalesce(b.State, 'UK')As State,

 b.POSTAL_CODE,

 b.Country,

 b.BirthDate,

 '' as PHONE_NUMBER_COMBINED,

 /*Pell*/

 coalesce(c.Pell, 'N') as Pell,

 /*End Pell*/

 b.EMAIL_ADDRESS,

 /*Academic Term Information*/

 d.CompleteDevMath,

 d.CompleteDevEnglish,

 d.TTransferIntent,

 d.DegreeTypeSought,

 Coalesce(d.Sem_GPA, '0') as Sem_GPA,

 Case when d.Overall_GPA = '.' then '0'

 Else coalesce(d.Overall_GPA, '0') end as Overall_GPA,

 /*Course Information*/

 e.SUBJECT,

 e.COURSE_NUMBER,

 e.COURSE_REFERENCE_NUMBER,

 Tranwrd(e.COURSE_TITLE_SHORT, ', ', ' ') as COURSE_TITLE_SHORT,

 Tranwrd(e.COURSE_TEXT_NARRATIVE, ', ', ' ') as COURSE_TEXT_NARRATIVE,

 e.PROGRAM_CLASSIFICATION,

 e.Course_Type,

 'NA' as GateWayCourse,

 'N' as CoRequisite,

 e.CourseBeginDate,

 e.CourseEndDate,

 e.Grade,

 e.CREDITS_ATTEMPTED,

 e.CREDITS_EARNED,

 e.Delivery_Method,

 e.Core_Course,

 e.Core_Course_Type,

 e.Core_Competency_Completed,

 e.OHOURS,

 e.Purpose_of_Course_Exchange,

 Coalesce(b.credential, e.Cert_Endorsed) as Cert_Endorsed,

 Coalesce(b.credential_provider, e.Cert_Industry) as Cert_Industry,

 e.Grade_Effective_Date,

 e.DGI_ID_TYPE,

 e.DGI_ID,

 e.DGI_Stu_ID

 From Students as a

 Left Join Identifying_Information as b on a.ID = b.ID

 Left Join Pell as c on a.id = c.id and a.ACADEMIC_PERIOD = c.Term

 Left Join Academic_Term_Information as d on a.ID = d.ID and a.ACADEMIC_PERIOD = d.ACADEMIC_PERIOD

 Left join Course_Information as e on a.ID = e.ID and a.ACADEMIC_PERIOD = e.ACADEMIC_PERIOD

 Where b.Cohort is not missing and a.ACADEMIC_PERIOD in &Term

; Quit;

/**************** Course Task list Start ****************/

Proc SQL;

 Create Table DegreeSoughtTest as

 Select Sum(Case When DegreeTypeSought = 'B' then 1 Else 0 End) as Bach,

 Sum(Case When DegreeTypeSought = 'M' then 1 Else 0 End) as Mast,

 Sum(Case When DegreeTypeSought = 'UK' then 1 Else 0 End) as UNKNW,

 Count(*) as total

 From Course_Data_File;

Quit;

Proc SQL;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field CH1' as task, 'Course.1.1' as Ref

 From Course_Data_File

 Where CH1 is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Cohort' as task, 'Course.2.1' as Ref

 From Course_Data_File

 Where Cohort is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Cohort Term' as task, 'Course.3.1' as Ref

 From Course_Data_File

 Where Cohort_Term is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Academic Year' as task, 'Course.4.1' as Ref

 From Course_Data_File

 Where Academic_Year is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Term' as task, 'Course.5.1' as Ref

 From Course_Data_File

 Where Term is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Insitution ID Type' as task, 'Course.6.1' as Ref

 From Course_Data_File

 Where Institution_ID_Type is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Insitution ID' as task, 'Course.7.1' as Ref

 From Course_Data_File

 Where Institution_ID is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student must have either an SSN or Student ID' as task, 'Course.8.1' as Ref

 From Course_Data_File

 Where SSN is missing and Student_ID is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field First Name' as task, 'Course.11.1' as Ref

 From Course_Data_File

 Where First_Name is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Last Name' as task, 'Course.13.1' as Ref

 From Course_Data_File

 Where Last_Name is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Current Street 1' as task, 'Course.15.1' as Ref

 From Course_Data_File

 Where Street_Line1 is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Current City' as task, 'Course.17.1' as Ref

 From Course_Data_File

 Where City is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Current State' as task, 'Course.18.1' as Ref

 From Course_Data_File

 Where State is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Current Country' as task, 'Course.20.1' as Ref

 From Course_Data_File

 Where Country is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Date of Birth' as task, 'Course.21.1' as Ref

 From Course_Data_File

 Where BirthDate is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Pell' as task, 'Course.23.1' as Ref

 From Course_Data_File

 Where Pell is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field CompleteDevMath' as task, 'Course.25.1' as Ref

 From Course_Data_File

 Where CompleteDevMath is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field CompleteDevMath' as task, 'Course.26.1' as Ref

 From Course_Data_File

 Where CompleteDevEnglish is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Degree Type Sought' as task, 'Course.28.1' as Ref

 From Course_Data_File

 Where DegreeTypeSought is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Semester/Session GPA' as task, 'Course.29.1' as Ref

 From Course_Data_File

 Where Sem_GPA is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Overall GPA' as task, 'Course.30.1' as Ref

 From Course_Data_File

 Where Overall_GPA is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Course Prefix' as task, 'Course.31.1' as Ref

 From Course_Data_File

 Where Subject is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Course Number' as task, 'Course.32.1' as Ref

 From Course_Data_File

 Where Course_Number is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Course Number' as task, 'Course.33.1' as Ref

 From Course_Data_File

 Where COURSE_REFERENCE_NUMBER is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Course Name' as task, 'Course.34.1' as Ref

 From Course_Data_File

 Where COURSE_TITLE_SHORT is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Course is listed as being able to exchange for reverse transfer and requires Course Description' as task, 'Course.35.1' as Ref

 From Course_Data_File

 Where COURSE_TEXT_NARRATIVE is missing and Purpose_of_Course_Exchange = '1';

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Course Classification of Instructional Programs (CIP) code' as task, 'Course.36.1' as Ref

 From Course_Data_File

 Where PROGRAM_CLASSIFICATION is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Course Type' as task, 'Course.37.1' as Ref

 From Course_Data_File

 Where Course_Type is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Math Or English Gateway' as task, 'Course.38.1' as Ref

 From Course_Data_File

 Where GateWayCourse is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Course Begin Date' as task, 'Course.40.1' as Ref

 From Course_Data_File

 Where CourseBeginDate is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Course Begin Date' as task, 'Course.41.1' as Ref

 From Course_Data_File

 Where CourseEndDate is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Grade' as task, 'Course.42.1' as Ref

 From Course_Data_File

 Where Grade is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Number of Credits Attempted' as task, 'Course.43.1' as Ref

 From Course_Data_File

 Where CREDITS_ATTEMPTED is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Number of Credits Earned' as task, 'Course.44.1' as Ref

 From Course_Data_File

 Where CREDITS_EARNED is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Course is identified as core course and must have competency area' as task, 'Course.47.1' as Ref

 From Course_Data_File

 Where Core_Course_Type is missing and Core_Course = "Y";

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Course is listed as being able to exchange for reverse transfer and requires total combined earned and transferred credit' as task,

'Course.49.1' as Ref

 From Course_Data_File

 Where OHOURS is missing and Purpose_of_Course_Exchange = '1';

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Purpose of Course Exchange' as task, 'Course.50.1' as Ref

 From Course_Data_File

 Where Purpose_of_Course_Exchange is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Purpose of DGI Institution ID Type' as task, 'Course.54.1' as Ref

 From Course_Data_File

 Where DGI_ID_TYPE is missing;

 Insert into Tasklist

 Select 'Course' as Report, ID as Student, 'Student is missing required field Purpose of DGI Institution ID' as task, 'Course.55.1' as Ref

 From Course_Data_File

 Where DGI_ID is missing;

 Insert into Tasklist

 Select 'Course' as Report, 'Report' as Student, 'The number of course records that contain a Degree Type Sought value of Unknown (UK) is greater than 0.' as task, 'Course.56.1'

as Ref

 From DegreeSoughtTest

 Where UNKNW > 0;

 Insert into Tasklist

 Select 'Course' as Report, 'Report' as Student, 'The number of course records that contain a Degree Type Sought value of Unknown (UK) exceeds the expected threshold.' as task,

'Course.57.1' as Ref

 From DegreeSoughtTest

 Where UNKNW/total > .01;

Quit;

/**************** Course Task list End ****************/

/**************** Export Course Data into Spreadsheet for review ****************/

Proc Export data = Course_Data_File outfile = "&Path\Ouput data for &OUTPUT_Term..XLSX" label DBMS = xlsx Replace;

 Sheet = "Course";

Run;

Data Course_Output; /*Course Report header*/

 Length output $2000.;

 Output = "DCE02, 10073232, 042295, 00, , , , , "||put("&SYSDATE"d, YYMMDDn8.)||", , &OUTPUT_Term, , , , ";

Run;

PRoc SQL;

 Insert into Course_Output

 Values('CH1, Cohort, Cohort Term, Academic Year, Term, Institution ID Type, Institution ID, SSN, ITIN, Student ID, First Name, Middle Name,

 Last Name, Suffix, Current Street 1, Current Street 2, Current City, Current State, Current Zip/Postal Code, Current Country,

 Date of Birth, Student Phone Number, Pell Recipient, Student Email, CompleteDevMath, CompleteDevEnglish, TransferIntent,

 Degree Type Sought, Semester/Session GPA, Overall GPA, Course Prefix, Course Number, Section ID, Course Name,

 Course Description, Course CIP, Course Type, MathOrEnglishGateway, Co-requisite Course, Course Begin Date, Course End Date,

 Grade, Number of Credits Attempted, Number of Credits Earned, Delivery Method, Core Course, Core Course Type,

 Core Competency Completed, Total Combined Earned and Transferred Credits, Purpose of Course Exchange,

 Certification Endorsed Curriculum/Program, Certificate Endorsing Industry, Grade Effective Date, DGI Institution ID Type,

 DGI Institution ID, DGI Student ID')

; Quit;

Proc SQL; /*Course report Body*/

 Insert into Course_Output

 Select strip(CH1)||", "||

 Strip(Cohort)||", "||

 Strip(Cohort_Term)||", "||

 Strip(Academic_Year)||", "||

 Strip(Term)||", "||

 Strip(Institution_ID_Type)||", "||

 Strip(Institution_ID)||", "||

 Strip(SSN)||", "||

 Strip(ITIN)||", "||

 Strip(Student_ID)||", "||

 Strip(FIRST_NAME)||", "||

 Strip(MIDDLE_NAME)||", "||

 Strip(LAST_NAME)||", "||

 Strip(NAME_SUFFIX)||", "||

 Strip(STREET_LINE1)||", "||

 Strip(STREET_LINE2)||", "||

 Strip(City)||", "||

 Strip(State)||", "||

 Strip(POSTAL_CODE)||", "||

 Strip(Country)||", "||

 STRIP(BirthDate)||", "||

 Strip(PHONE_NUMBER_COMBINED)||", "||

 Strip(Pell)||", "||

 Strip(EMAIL_ADDRESS)||", "||

 Strip(CompleteDevMath)||", "||

 Strip(CompleteDevEnglish)||", "||

 Strip(TTransferIntent)||", "||

 Strip(DegreeTypeSought)||", "||

 Strip(Sem_GPA)||", "||

 Strip(Overall_GPA)||", "||

 Strip(SUBJECT)||", "||

 Strip(COURSE_NUMBER)||", "||

 Strip(COURSE_REFERENCE_NUMBER)||", "||

 Strip(COURSE_TITLE_SHORT)||", "||

 Strip(COURSE_TEXT_NARRATIVE)||", "||

 Strip(PROGRAM_CLASSIFICATION)||", "||

 Strip(Course_Type)||", "||

 Strip(GateWayCourse)||", "||

 Strip(CoRequisite)||", "||

 Strip(CourseBeginDate)||", "||

 Strip(CourseEndDate)||", "||

 Strip(Grade)||", "||

 Strip(CREDITS_ATTEMPTED)||", "||

 Strip(CREDITS_EARNED)||", "||

 Strip(Delivery_Method)||", "||

 Strip(Core_Course)||", "||

 Strip(Core_Course_Type)||", "||

 Strip(Core_Competency_Completed)||", "||

 Strip(OHOURS)||", "||

 Strip(Purpose_of_Course_Exchange)||", "||

 Strip(Cert_Endorsed)||", "||

 Strip(Cert_Industry)||", "||

 Strip(Grade_Effective_Date)||", "||

 Strip(DGI_ID_TYPE)||", "||

 Strip(DGI_ID)||", "||

 Strip(DGI_Stu_ID) as Output

 From Course_Data_File;

Quit;

Proc SQL; /*Course Report Footer*/

 Insert into Course_Output

 Select "T1, "||strip(Put(Count(*)+3, 8.))||", " as Output

 From Course_Data_File;

Quit;

data _null_; /*Export text file*/

 file "&Path\i_04229500PDP_Texas_AM_University_Central_Texas_Course_&OUTPUT_Term..Txt";

 set Course_Output;

 put outPut ~ ; *variable to be exported;

run;

Proc SQL; /*Combine sections to create Financial Aid Data*/

 Create Table Financial_Aid_Data_File as

 Select Distinct

 a.ID,

 /*Identifying Information*/

 'D1' as CH1,

 b.Cohort,

 b.Cohort_Term,

 a.Academic_Year,

 b.Institution_ID_Type,

 b.Institution_ID,

 b.SSN,

 b.ITIN,

 b.Student_ID,

 b.FIRST_NAME,

 b.MIDDLE_NAME,

 b.LAST_NAME,

 b.NAME_SUFFIX,

 b.STREET_LINE1,

 b.STREET_LINE2,

 b.City,

 b.State,

 b.POSTAL_CODE,

 b.Country,

 b.BirthDate,

 /*FASFA Data*/

 coalesce(c.Applied_Aid, 'N') as Applied_Aid,

 c.DEPENDENCY_INDEPEND,

 Case When Strip(c.ADJUSTED_GROSS_INCOME) < '0' then '0'

 Else Coalesce(Strip(c.ADJUSTED_GROSS_INCOME), '0') end as ADJUSTED_GROSS_INCOME,

 coalesce(Put(e.total_Tutition, 8.), '0') as total_Tutition,

 Coalesce(c.Housing, '3') as Housing,

 Coalesce(strip(c.Room), '0') as Room,

 coalesce(Strip(c.Board), '0') as Board,

 Coalesce(Strip(c.Books), '0') as Books,

 Coalesce(Strip(c.Other_exp), '0') as Other_Exp,

 Coalesce(Strip(c.PELL_EFC), '0') as PELL_EFC,

 c.Marital_Status,

 Case When c.NoDepdents = '.' then '0' end as NoDepdents,

 /*Grant and Loan Information*/

 Put(Coalesce(d.SEOG, 0), 8.) as SEOG,

 Put(Coalesce(d.TEACH, 0), 8.) as TEACH,

 Put(Coalesce(d.Military, 0), 8.) as Military,

 Put(Coalesce(d.FGO, 0), 8.) as FGO,

 Put(Coalesce(d.Pell, 0), 8.) as Pell,

 Put(Coalesce(d.SGN, 0), 8.) as SGN,

 Put(Coalesce(d.SGM, 0), 8.) as SGM,

 Put(Coalesce(d.IGN, 0), 8.) as IGN,

 Put(Coalesce(d.INST_Grant_Employ, 0), 8.) as INST_Grant_Employ,

 put(Coalesce(d.IGM, 0), 8.) as IGM,

 Put(Coalesce(d.INST_Grant_Mil, 0), 8.) as INST_Grant_Mil,

 Put(Coalesce(d.INST_Grant_Other, 0), 8.) as INST_Grant_Other,

 put(Coalesce(d.Grant_Other, 0), 8.) as Grant_Other,

 put(Coalesce(d.FLO, 0), 8.) as FLO,

 Put(Coalesce(d.SL, 0), 8.) as SL,

 Put(Coalesce(d.IL, 0), 8.) as IL,

 Put(Coalesce(d.PLUS, 0), 8.) as PLUS,

 Put(Coalesce(d.EL, 0), 8.) as EL,

 Put(Coalesce(d.FW, 0), 8.) as FW,

 Put(Coalesce(d.SW, 0), 8.) as SW,

 Put(Coalesce(d.IW, 0), 8.) as IW,

 Put(Coalesce(d.Other, 0), 8.) as Other

 From Students as a

 Left Join Identifying_Information as b on a.ID = b.ID

 Left Join FASFA_Information as c on a.id = c.id and a.ACADEMIC_YEAR_DESC = c.Aid_Year

 Left Join Grant_Loans as d on a.id = d.id and a.ACADEMIC_YEAR_DESC = d.Aid_Year

 Left Join Tuition as e on a.id = e.id and a.ACADEMIC_YEAR_DESC = e.ACADEMIC_YEAR_DESC

 Where b.Cohort is not missing

; Quit;

/**************** Financial Aid Task list Start ****************/

Proc SQL;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field CH1' as task, 'FinAid.1.1' as Ref

 From Financial_Aid_Data_File

 Where CH1 is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Cohort' as task, 'FinAid.2.1' as Ref

 From Financial_Aid_Data_File

 Where Cohort is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Cohort Term' as task, 'FinAid.3.1' as Ref

 From Financial_Aid_Data_File

 Where Cohort_Term is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Academic Year' as task, 'FinAid.4.1' as Ref

 From Financial_Aid_Data_File

 Where Academic_Year is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Institution ID Type' as task, 'FinAid.5.1' as Ref

 From Financial_Aid_Data_File

 Where Institution_ID_Type is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Institution ID' as task, 'FinAid.6.1' as Ref

 From Financial_Aid_Data_File

 Where Institution_ID is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student must have either SSN or Student ID' as task, 'FinAid.7.1' as Ref

 From Financial_Aid_Data_File

 Where SSN is missing and Student_ID is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field First Name' as task, 'FinAid.10.1' as Ref

 From Financial_Aid_Data_File

 Where First_Name is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Last Name' as task, 'FinAid.12.1' as Ref

 From Financial_Aid_Data_File

 Where Last_Name is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Street Line 1' as task, 'FinAid.14.1' as Ref

 From Financial_Aid_Data_File

 Where Street_Line1 is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field City' as task, 'FinAid.16.1' as Ref

 From Financial_Aid_Data_File

 Where City is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field State' as task, 'FinAid.17.1' as Ref

 From Financial_Aid_Data_File

 Where State is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Country' as task, 'FinAid.19.1' as Ref

 From Financial_Aid_Data_File

 Where Country is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Birth Day' as task, 'FinAid.20.1' as Ref

 From Financial_Aid_Data_File

 Where BirthDate is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Applied Aid' as task, 'FinAid.21.1' as Ref

 From Financial_Aid_Data_File

 Where Applied_Aid is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is identified as having applied aid and must have a dependency status' as task, 'FinAid.22.1' as Ref

 From Financial_Aid_Data_File

 Where DEPENDENCY_INDEPEND is missing and Applied_Aid = 'Y';

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is identified as having applied aid and must have an income' as task, 'FinAid.23.1' as Ref

 From Financial_Aid_Data_File

 Where ADJUSTED_GROSS_INCOME is missing and Applied_Aid = 'Y';

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Tutition' as task, 'FinAid.24.1' as Ref

 From Financial_Aid_Data_File

 Where total_Tutition is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Type of Housing' as task, 'FinAid.25.1' as Ref

 From Financial_Aid_Data_File

 Where Housing is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Room Charges' as task, 'FinAid.26.1' as Ref

 From Financial_Aid_Data_File

 Where Room is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Board Charges' as task, 'FinAid.27.1' as Ref

 From Financial_Aid_Data_File

 Where Board is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Books' as task, 'FinAid.28.1' as Ref

 From Financial_Aid_Data_File

 Where Books is missing;

 Insert into Tasklist

 Select 'FinAid' as Report, ID as Student, 'Student is missing required field Other Expense' as task, 'FinAid.29.1' as Ref

 From Financial_Aid_Data_File

 Where Other_Exp is missing;

/*Add Grant and loans task list.*/

Quit;

/**************** Financial Aid Task list End ****************/

/**************** Export Financial Aid Data into Spreadsheet for review ****************/

Proc Export data = Financial_Aid_Data_File outfile = "&Path\Ouput data for &OUTPUT_Term..XLSX" label DBMS = xlsx Replace;

 Sheet = "Financial Aid";

Run;

Data Financial_Aid_Output; /*Financial Aid Header*/

 Length output $2000.;

 Output = "DCE03, 10073232, 042295, 00, , , , , "||put("&SYSDATE"d, YYMMDDn8.)||", , &OUTPUT_Term, , , , ";

Run;

PRoc SQL;

 Insert into Financial_Aid_Output

 Values('CH1, Cohort, Cohort Term, Academic Year, Institution ID Type, Institution ID, SSN, ITIN, Student ID, First Name,

 Middle Name, Last Name, Suffix, Street Line 1, Street Line 2, City, State, Zip/Postal Code, Country, Date of Birth,

 Applied Aid, Depend, Income, Tuition, Type of Housing, Room Charges, Board Charges, Books, Other Expense, EFC,

 Marital Status, Number of Dependents, SEOG, TEACH, Veteran and Military, Other Federal Grant, Pell Amount,

 State Grant Need Based, State Grant Non Need Based, Institution Grant Need Based,

 Institution Grant Employer Aid, Institution Grant Merit, Institution Grant Military or Veteran,

 Other Institution Grant Non Need Based, Other Grant, Federal Loan, State Loan, Institution Loan, Parent PLUS,

 Other Loan, Federal Work, State Work, Inst Work, Other Aid')

; Quit;

Proc SQL; /*Financial Aid Body*/

 Insert into Financial_Aid_Output

 Select strip(CH1)||", "||

 Strip(Cohort)||", "||

 Strip(Cohort_Term)||", "||

 Strip(Academic_Year)||", "||

 Strip(Institution_ID_Type)||", "||

 Strip(Institution_ID)||", "||

 Strip(SSN)||", "||

 Strip(ITIN)||", "||

 Strip(Student_ID)||", "||

 Strip(FIRST_NAME)||", "||

 Strip(MIDDLE_NAME)||", "||

 Strip(LAST_NAME)||", "||

 Strip(NAME_SUFFIX)||", "||

 Strip(STREET_LINE1)||", "||

 Strip(STREET_LINE2)||", "||

 Strip(City)||", "||

 Strip(State)||", "||

 Strip(POSTAL_CODE)||", "||

 Strip(Country)||", "||

 Strip(BirthDate)||", "||

 Strip(Applied_Aid)||", "||

 Strip(DEPENDENCY_INDEPEND)||", "||

 Strip(ADJUSTED_GROSS_INCOME)||", "||

 Strip(total_Tutition)||", "||

 Strip(Housing)||", "||

 Strip(Room)||", "||

 Strip(Board)||", "||

 Strip(Books)||", "||

 Strip(Other_exp)||", "||

 Strip(PELL_EFC)||", "||

 Strip(Marital_Status)||", "||

 Strip(NoDepdents)||", "||

 Strip(SEOG)||", "||

 Strip(TEACH)||", "||

 Strip(Military)||", "||

 Strip(FGO)||", "||

 Strip(Pell)||", "||

 Strip(SGN)||", "||

 Strip(SGM)||", "||

 Strip(IGN)||", "||

 Strip(INST_Grant_Employ)||", "||

 Strip(IGM)||", "||

 Strip(INST_Grant_Mil)||", "||

 Strip(INST_Grant_Other)||", "||

 Strip(Grant_Other)||", "||

 Strip(FLO)||", "||

 Strip(SL)||", "||

 Strip(IL)||", "||

 Strip(PLUS)||", "||

 Strip(EL)||", "||

 Strip(FW)||", "||

 Strip(SW)||", "||

 Strip(IW)||", "||

 Strip(Other)

 as Output

 From Financial_Aid_Data_File;

Quit;

Proc SQL; /*Financial Aid Footer*/

 Insert into Financial_Aid_Output

 Select "T1, "||strip(Put(Count(*)+3, 8.))||", " as Output

 From Financial_Aid_Data_File;

Quit;

Proc Export data = Financial_Aid_Output outfile = "&Path\i_04229500PDP_Texas_AM_University_Central_Texas_Financial_Aid_&OUTPUT_Term..Txt" label DBMS = Tab Replace; putnames = No;

Run;

/*Remove any blank lines from Task list*/

Proc SQL; Create Table Tasklist as Select * From Tasklist Where Report is not missing; Quit;

/*Export Export Tasklist into Spreadsheet for review*/

Proc export data=Tasklist dbms=xlsx outfile="&Path\Ouput data for &OUTPUT_Term..XLSX" replace;

 Sheet = "Task List";

run;

Proc SQL;

 Create Table Courses_test as

 Select Distinct

 stu_subj,

 stu_crse,

 Substr(STU_CRN, 1, 5) as STU_CRN,

 Catx("-", stu_subj, stu_crse, Substr(STU_CRN, 1, 5)) as Course,

 COunt(Stu_CBMID) as Class_Count

 From EDW.CBM00S

 Where &Report_Terms

 Group by stu_subj, stu_crse, STU_CRN, Course

 Order by stu_subj, stu_crse, STU_CRN, Course

 ; Quit;

/*Export Export Tasklist into Spreadsheet for review*/

Proc export data = Courses_test dbms=xlsx outfile="&Path\Ouput data for &OUTPUT_Term..XLSX" replace; Sheet = "CBM00S Course Compare"; run;

Proc SQL; Create Table Cohort_Test as Select Distinct ID From EDW.CBM0E1 Where STU_CLASS in ('1', '2', '3', '4', '5') and STU_TRNS_FTIC NE . and &Report_terms ; Quit;

/*Export Export Tasklist into Spreadsheet for review*/

Proc export data = Cohort_Test dbms=xlsx outfile="&Path\Ouput data for &OUTPUT_Term..XLSX" replace; Sheet = "CBM0E1 ID Compare"; run;

