

Cluster Analysis Using K-Means

Rion McDonald Senior Data Analyst

Cluster Analysis

- 1. Used to subdivide observations into groups with similar characteristics
- 2. Used to perform *unsupervised* machine learning
- 3. Covers a variety of methods/algorithms

K-Means Clustering

- 1. Separates data into k groups pre-defined by analyst
- 2. Identifies groups such that...
 - a) Group members as similar to other members as possible
 - b) Group members as distinct from other groups as possible
- 3. Processes large datasets well

U.S. News Rankings: School Clusters (Rank >= UNT)

K-Means: Data Preparation

- 1. Use continuous numerical data
- 2. Standardize each variable before analysis

Standard Score =

Observation Value – Variable Mean

Variable Standard Deviation

Euclidean Distance

Distance =

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

 $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2 \dots + (n_1 - n_2)^2}$

-3

Finding the Correct Number of Clusters (K)

- 1. Try different # of clusters
- 2. Examine fit/performance measure(s)
- Exercise judgment in regard to accuracy vs. complexity

Example of Evaluation Statistics for a Given K

Variable	Within Cluster Standard Deviation	R-Squared	
Retention Rate	0.47316	77.9%	
Peer Assessment	0.48453	76.8%	
Student-Faculty Ratio	0.70031	51.6%	
Alumni Giving Rate	0.60083	64.4%	
Overall	0.63016	60.8%	

Sum of Squared Distance Graph

Delaware Cost Study Data

- 1. National study began in 1992
- 2. Productivity/Cost measures tied to degree programs
- 3. External benchmarking by classification, program characteristics, and peer group
- 4. Internal benchmarking opportunities available

Cost Study Cluster Data

By program...

- 1. Total yearly degrees awarded (three-year average)
- 2. Total yearly SCH
- 3. Annual instructional cost per SCH
- 4. Annual research expenditures per tenure/tenure track faculty FTE

Program Cluster Averages

Cluster	Degrees	SCH	Instructional Expense	Research Expenditures
Low Output/ High Cost <i>(n=22)</i>	25	2,391	\$554	\$7,466
High Output/ Low Cost (n=13)	199	28,848	\$148	\$23,822
Medium Output/ Medium Cost (<i>n=60</i>)	62	8,030	\$206	\$11,770
High Research/ Medium Cost (<i>n=12</i>)	21	3,699	\$237	\$87,947

Thank You

rion.mcdonald@unt.edu